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Membrane Fouling Mitigation: Membrane Cleaning

Justin Chun-Te Lin,"” Duu-Jong Lee,' and Chihpin Huang?

'Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
2Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan

Fouling is an inevitable hurdle limiting flux and performance of
membrane processes. This paper reviewed the literature studies on
physical cleaning methods and chemical cleaning and commented
on the indices for cleaning efficiencies therein used in literature
works.
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INTRODUCTION

Fouling exists ubiquitously in various types of
membranes in filtration, including those on dense mem-
branes, i.e., nanofiltration (NF) and reverse osmosis (RO)
membranes, and on porous membranes, i.e., microfiltra-
tion (MF) and ultrafiltration (UF) membranes. The
IUPAC Working Party on Membrane Nomenclatures has
given “fouling” a definition as ““the process resulting in loss
of performance of a membrane due to deposition of sus-
pended or dissolved substances on its external surfaces, at
its pore openings, or within its pores” (1). Fouling of the
membrane causes deterioration of membrane materials
and decreased membrane performance (in terms of flux
decline).

Jagannadh and Muralidhara (2) listed four approaches to
mitigate membrane fouling and concentration polarization:

(i) boundary layer (velocity) control.

(if) turbulence inducers/generators.
(iil) membrane modifications and materials.
(iv) combined (external) fields.

Williams and Wakeman (3) listed a few fouling
alleviation techniques, such as feed pre-treatment, flow
manipulation, gas sparging, rotating membranes, and
others. Cleaning of fouled membranes is elucidated as “‘a
process where material is relieved of a substance which is
not an integral part of the material” (4). Cleaning is
classified as physical and chemical cleaning, with the
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former incorporating only physical processes such as
hydraulic, pneumatic, mechanic, and applied electric fields;
and with the latter comprising use of numerous chemicals,
like acids, bases, oxidants, and surfactants. In practice,
physical cleaning followed by chemical cleaning is widely
applied in membrane applications to confine the extent of
membrane fouling. Zhang and Liu (5) used a four-step
method, including water cleaning, acid cleaning (0.1N
hydrochloric acid), second water cleaning, and caustic
cleaning (1% w/w NaOH) to clean a hollow fiber PS/
PDC (MWCO 30kDa) membrane.

This paper provides an up-to-date summary of cleaning
studies reported in pertinent literature, considering the indi-
ces proposed in these studies for characterizing membrane
cleaning efficiencies.

PHYSICAL CLEANING

Table 1 summarizes studies considering physical
cleaning on fouled membranes.

Physical cleaning of porous membranes includes
hydraulic and pneumatic approaches and sonication (ultra-
sound). The hydraulic cleaning, which includes flushing
(forward) and backwashing/backpulsing, is the most
common and easiest technique for mitigating fouling (6).
Regular intermittent backwash leads to the lift-off of
deposited particles from the membrane surface and mini-
mizes the extent of concentration polarization (7), which
nowadays becomes a standard cleaning procedure in
MBR and many other crossflow filtration systems. For-
ward flushing can be undertaken during the filtration cycle
with a backwash to improve shear and remove particle
concentration build-ups. Backpulsing (or called back-
shocking) is a more rapid backwash with a forward
filtration step and followed by a reversed filtration step.
Rapid backpulsing (<0.1s) effectively removed the non-
adhesive foulants from membranes (8.9). Yigit et al. (10)
noted that a more intensive backwash can more readily
reduce reversible fouling on MBR filtration.

The pneumatic cleaning of the membrane was termed as
air sparging, air lifting, air scouring, and air bubbling. Air
is applied for direct cleaning or to enhance flux in the fil-
tration step such as water/air flushing (11). The pneumatic
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cleaning process benefits in its low maintenance cost, ease
to integrate in the existed system, and the use of no clean-
ing chemicals. However, the disadvantages of air sparging
include limited effectiveness in cleaning and the high pump-
ing cost. The combined cleaning of air sparging and
hydraulic backflush (AS + BF) is commonly applied in
MBR (12) and spiral wound NF to reduce biofouling (13).

Mechanical cleaning, such as sponge ball wiping, is
an effective physical cleaning process (14,15). A large-
diameter tubular membrane can be cleaned mechanically
by using sponge balls (16).

Chen et al. (17) discussed the effects of the production
interval between physical cleaning (0.5h or 3h), the
duration of forward flush (1 min or 5min), the duration
of backwash (1 min or Smin), the pressure during forward
flush (1.72bar or 3.45bar), the type of water used (RO
permeate or tap water), and the sequence of forward flush
(F) and backwash (B) (either F + B or B + F), on cleaning
efficiencies of UF membranes. Juang and Lin (18)
developed a correlation for the reversible resistance for
their ultrasound oil/water filtration tests.

Ultrasound irradiation (sonication) is another effective
physical cleaning method, but has received comparatively
lesser attention in literature. Ultrasound waves produce
cavitation and induce acoustic streaming, which provide
vigorous mixing to breaking concentration polarization
and cake layer on the membrane surface. However, it can-
not influence the intrinsic permeability of the membranes
(19). The use of high energy, ultrasonic pulse in membrane
cleaning can break absorbed foulants and delodge
detached bacterial biofilm on the membrane surface.
Effects including ultrasound frequency, power intensity,
feed properties, membrane materials, crossflow velocity,
temperature, and pressure are needed to be considered by
using this physical cleaning (19). Lower ultrasound
frequencies are preferred for membrane cleaning. Masselin
et al. (20) commented that the polyethersulfone (PES)
membranes are more readily damaged by the ultrasound
waves compared with the polyvinylidene fluoride (PVDF)
and polyacrylonitrile (PAN) membranes. Li et al. (21) used
ultrasonic cleaning, forward flushing, and a combined
approach of the two to clean the flat sheet nylon micro-
filtration membranes. Lim and Bai (22) tested the effects
of sonication duration and the combination with other
physical and chemical cleanings on flux recovery of hollow
fiber PVDF membranes in the MBR process. Cai et al. (23)
compared two types of the ultrasonic source (ultrasonic
transducer plate and probe) in cleaning a UF membrane
fouled by an aqueous extract of Radix astragalus.

Applying electric fields to alleviating membrane fouling
is regarded as a physical cleaning method although it is
traditionally used to enhance transport through mem-
branes (24). Zumbusch et al. (25) applied alternating
electrical fields to minimize fouling in ultrafiltration of

biological suspensions. These authors also introduced a
“step-change” procedure to perform crossflow filtration.
Williams and Wakeman (3) examined how DC electric
fields affected MF membrane fouling and rejection.
Tarazaga et al. (26,27) applied electric field to clean
biofouled inorganic UF membrane (i.e., Carbosep™ MS,
Zr0,-TiO, on carbon support). The exponential flux
decline was characterized by various technical parameters.

Intermittent filtration (or ‘“membrane relaxation
mode™) is a “passive’ physical cleaning step as no “active”
cleaning methods are involved. The intermittent filtration
mode effectively reduces fouling in suction-type membrane
operation, e.g., submerged MBR, and normal pressure-
driven type operations, e.g., tangent-flow (cross flow) and
dead-end operations. Such relaxation mode during the
filtration process if carried out in a shorter period could
be seen as an operation scheduling or flow manipulation
for fouling elimination, such as pulsating flow or periodic
air/water cleaning. Cornelissen et al. (13) conducted and
compared different physical and chemical cleaning in
parallel in three individual spiral-wound modules, and
noted that daily air/water flushing presented very effective
procedure in minimizing membrane fouling.

CHEMICAL CLEANING

Chemical cleaning presents the major method to restore
and maintain the “expected” permeability and selectivity in
most membrane processes. Chemical cleaning can be
carried out in various ways:

i. directly immersing the fouled membranes in the
chemicals, i.e., “clean-in-place (CIP),”

ii. soaking in a separate tank with higher concentration
cleaning agents, i.c., “‘clean-out-off-place (COP).”

iii. adding chemicals in the feed stream, i.e., chemical wash
(CW), or

iv. cleaning in conjunction with the physical cleaning step,
i.e., a chemical enhanced backwash (CEB).

Most chemical cleaning agents are commercially avail-
able and many of them were recommended by membrane
manufacturers to deal with different types of foulants in
the feeds. For example, acid cleaning is often used to
remove precipitated salts or scalants (such as CaCOs;);
while caustic cleaning is suitable for removing adsorbed
organics. The recipes of cleaning agents should be varied
depending on the applications, feed characteristics (e.g.,
pH, ionic strength, temperature, and other ‘‘significant”
metals or compounds), and membrane materials (as some
are more vulnerable). Chemical cleaning agents were
normally classified into five categories:

a. alkaline.
b. acids (e.g., nitric, phosphoric, hydrochloric, sulphuric,
citric acids),
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c. metal chelating agents,

d. surfactants (i.e., surface-active agents, including anio-
nic, cationic, non-ionic and amphoteric electrolytes),

e. enzymes.

In addition to the five main categories, disinfectants
(03), oxidants (e.g., H,O,, KMnQO,), or sequestration
agents (e.g., EDTA) are often used for cleaning chemicals
of membranes. A blend of various cleaning agents or com-
bination with other physical cleaning are also commonly
adopted (28). Zondervan and Roffel (29) listed several
common chemical cleaning agents, including caustic
(NaOH, KOH, NH4OH), acidic (HCl, HNO3,H,SOy,,
H3PO,, citric, oxalic), sequestering/complexing (EDTA),
detergent/surfactant (alkyl sulphate, SDS, CTAB), enzy-
matic (a-CT, CP-T, peroxidase), oxidative/disinfectants
(NaOCl, H,0,, KMnQO,), and blend cleaning (4 Aqua-
clean®™, Divos®, TRiclean®™, Ultrasil®/Aquaclean®). In
addition to the types of chemical agents, other factors
affecting the chemical cleaning efficiency include cleaning
time, concentration, cleaning temperature, and flux. Chen
et al. (17) evaluated the effects of recirculation duration
of high pH cleaning (0.5h or 1.0h), concentration of high
pH cleaning solution (0.5% or 1.0%), the temperature of
the high pH cleaning solution (25°C or 50°C), static soak
(0 or 0.5h), and forward flush (F), or backwash (B) after
chemical cleanings on cleaning UF membranes.

The possible interactions of chemical agents and fouled
membranes include: hydrolysis, peptization, saponification,
solubilization, dispersion (suspension), and chelation. The
preferred cleaning agents in relation to membrane foulants
source (i.e., proteins, glucanes, pigments, minerals, hydro-
phobes, starch, tannins, pectin, and fat) are also addressed.
In addition, they evaluated the efficiency of the cleaning
agents and optimized the cleaning sequence. Weis et al.
(30) illustrate that a cleaning agent can affect fouling
materials presenting on membrane surface in the following
three ways:

1. the foulants may be removed,
ii. the morphology of foulants may be changed (swelling,
compaction) and/or
iii. the surface chemistry of the deposit may be altered,
such that the hydrophobicity or charge is modified.

Chemical cleaning processes at membrane surface can
be divided into six stages:

bulk reactions.

transport of detergent to interface,

transport of detergent into foulant layer,

cleaning reactions in the fouling layer,

transport of cleaning reaction products back to
interface,

6. transport of product to bulk solution. Exposure of
the membrane in the cleaning agent of too high

SAEal ol

concentration and for too long a period of time would
damage membranes structure (31).

A complete chemical cleaning cycle (CC) comprised
several filtration cycles (FC) and a subsequent chemical
cleaning phase (C). The FC is comprised of the filtration
phase (F) and the baskwash phase (B). Zondervan and
Roffel (32) evaluated the effects of different chemical clean-
ing agents on removing UF membrane fouling. Zondervan
et al. (33) modelled the dynamic decay of irreversible foul-
ing resulted from ultrafiltration of the surface water, which
can predict the states of irreversible fouling as a function of
cleaning time, cleaning flux, and initial cleaning agent con-
centration of each cleaning cycle. However, the parameters
adopted in this model are somehow oversimplified, such as
characterizing the cleaning effectiveness of irreversible
fouling by turbidity integral and the chemical cleaning
agent concentration by pH. Moreover, the ratio of the
flushing rate constant and cleaning rate constant can be
used to characterize the effectiveness of cleaning irrevers-
ible fouling and is mainly dominated by either mechanical
(flushing) or chemical aspects.

Popovi¢ et al. (34) evaluated the cleaning efficiency
of alkali (0.2% and 1% w/w NaOH) and detergent
(0.2% w/w P3-ultrasil 69+ 1% w/w P3-ultrasil 67; 1.2%
w/w P3-ultrasil 69 and 0.75% w/w P3-ultrasil 67). These
authors proposed a kinetic model for the two chemical
cleanings of a whey-protein-fouled ceramic membrane of
average pore size 200nm (SCT, Bazet, France).

Table 2 summarizes studies considering chemical
cleaning on fouled membranes.

CLEANING EFFICIENCY

Bowen and Jenner (35), Belfort et al. (36), van den Berg
and Smolders (37), and Fane and Fell (38) reviewed
quantitative models for membrane filtration data. The
fouling of membranes in general can be interpreted by
Darcy’s law as follows:

av AP

J: =
A-di p-(Ro+ 2 R;)

()

where J, is the volumertric flux of permeate, V is the
accumulated volume of permeate, 4 is the membrane
surface area, AP is the pressure drop imposed across the
fouling layer and membrane, u is the permeate viscosity,
Ry is virgin membrane filtration resistance and determined
by clean water flux measurement, and XR; is the
resistances-induced during filtration (39).

The cleaning efficiency of fouling NF membranes of
surface water were evaluated (40) by the flux recovery
and the fouling ratio as follows:

Flux recovery = J./Jy, (2)
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where J. is the flux after the application of a certain
cleaning solution or total cleaning procedure, Jj is the flux
of the virgin membrane, and

Fouling ratio = Jy | Jy (3)

where Jris the flux for fouled membrane (in this case, after
every week’s run). The cleaning efficiency of the applying
electric field was evaluated by Tarazaga et al. (26,27) using
an index identical to the Flux recovery in Eq. (2).

Yamamura et al. (41) used an index, decline ratio of pure
water flux (J;/J.), to characterize fouling on various stages
and efficiency of chemical cleaning on MF membrane for
surface water and ceramic UF membrane for whey protein
concentrates (WPC) characterize. Factors affecting the
chemical cleaning efficiency (flux recovery), such as NaOH
concentration, temperature, crossflow velocity, and TMP,
were investigated by Bird and Bartlett (42). An index for
evaluating the cleaning efficiency, called “percent flux
recovery (%J,),” was proposed with a definition similar
to the flux recovery in Eq. (2).

The extent of fouling (for 40 h continuous experiment)
for NF 200, NF 270, and the laboratory-modified
membranes are characterized below (43):

Fouling percentage(oFR) = 100(J (i — 1) — Jy(i))/J.(i— 1)
(4)

where J.(i— 1) is the pure water flux for the membrane
cleaned at cycle i—1, and J.(i—1) is the pure water flux
for the membrane fouled at cycle i.

Zator et al. (44,45) used two similar indices to evaluate
the cleaning efficiency of the membrane: Pure water flux
reduction (FRED) is defined as follows:

FRED(%) = 100(Jo — J;)/Jo (5)

Clearly, FRED(%)=100(1-Fouling Ratio(Eq. (3)), and
FREC is identical as the Flux recovery defined in Eq. (2).
Chellam et al. (46) evaluated the baskwash efficiency by

n= IOO(Pf _pc)/(pf _pO)a (6)

where ps, p., and p, are pressures applied for the fouled
membrane, the cleaned membrane, and the virgin mem-
brane, respectively. Under constant-flux test, n represents
the fraction of the fouled resistance that is removed by
the applied cleaning.

Madaeni and Mansourpanah (47) evaluated the
chemical cleaning efficiency of fouled RO membranes by
following two parameters: resistance removal (RR%) and
flux recovery (FR%):

RR% = [(Ry — R,)/Ry]"100 (7)

where Ry is the resistance remaining after water flushing
and R, is the resistance remaining after chemical cleaning,
and

FR% = 100(J. — Jus)/(Jo — Juy) (8)

where J,,, is the permeate flux for the fouled membrane
after simple water flushing. Restated, in case the water
flushing cannot remove a significant part of the fouled
materials, FRY =[1-Flux recovery (Eq. (2))/Fouling ratio
(Eq. (3))] and FR%=[%FR(Eq. (4))/FRED%(Eq. (5)]*
(Jo/Jo). Wu and Bird (48) also used the flux recovery
(FR%) and, additionally, the fouling resistance recovery
(FRR) to evaluate the cleaning efficiency of ultrafiltration
for the model tea component solution, with the latter
defined as follows:

FRR% = [(Ry — R.)/(Ry — Ry]"100 9)

where Ryand R, present the pure water flux resistances for
the fouled and the cleaned membrane, respectively. That is,
FRR% =1 defined in Eq. (6) for constant flux tests. Chai
et al. (49) used the cleaning efficiency (E,) to compare the
effectiveness of three physical cleaning approaches (i.e.,
ultrasonic cleaning, water cleaning, and water cleaning
under sonication) in microfiltration and ultrafiltration of
a peptone solution. The definition of E. is in fact equivalent
to FRR% in Eq. (9).

Chen et al. (17) evaluated the efficiency of membrane
cleaning by the following three parameters:

1. clean water flux (CWF) recovery [%], which is the same
as Eq. (5);
ii. wash water usage, defined as (volume of wash water
used/total volume water produced); and
iii. improvement in TDS rejection, defined as: [TDS rejec-
tion before chemical cleaning]-[TDS rejection after
chemical cleaning].

Blanpain-Avet et al. (50) characterized the cleaning
efficiency of a tubular ceramic filtration MF membrane,
which fouled with a whey protein concentration suspen-
sion. Parameters, such as “relative flux decline
(RFD =1 — (J;/Jy)] x 100),” identical to Fouling ratio in
Eq. (3), were used to evaluate the membrane performance
during filtration (fouling); and the “percent flux recovery
(FR% =(Ro/R.;) x 100)” and ‘“hydraulic cleanliness cri-
terion (HCC)” were used for the cleaning effectiveness
evaluation. The hydraulic cleanliness criterion (HCC =
(R.;i — Ro)/ Ry)) representing the proportion of the residual
fouling resistance left after cleaning in the i-th cycle
(R.; — Rp) to the initial membrane resistance (R,), identical
to (1/Flux recovery (Eq. (2))-1 nuder constant pressure
filtration. The cleaning approach is considered effective
while HCC <0.05. A “residual fouling resistance (R;.)”
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was proposed to characterize the sequence chemical
cleaning efficiency as follows:

Rc[/Ro =1+ R,',/R() (12)

Blanpain-Avet et al. (51) further introduced another
parameter, namely “percent irreversible removed fouling
(RF),” to evaluate the hydraulic and chemical membrane
cleanliness of whey protein fouled ultrafiltration mem-
branes, as follows:

Ry — (R, —Ry)
= R

RF x 100(%) (13)

This index lacks sound physical meaning in its
definition.

The cleaning efficiency (CE), adopted by Matzinos and
Alvarez (52), assessed the cleaning process by the following
parameter:

=

CE=_"—"2¢

m

*If" x 100 (14)

=

r

where Ry is the clean membrane resistance, R, is the resist-
ance of the irreversible fouling deposit, and R, is the clean-
ing resistance. Restated, CE represents the fraction of
fouling removed during cleaning, but based on the total
fouling resistance, indicating the fraction of cleaning
efforts that is effective for removing fouling. The cleaning
efficiency proposed by Petrus et al. (53) was based on the
same arguments. The solute resistance removal was defined
by Munoz-Aguado et al. (54) to evaluate the enzymatic and
detergent cleaning (i.e., CTAB, Treg-A-Zyme®, «-CT)
efficiency also regarded the fraction of foulants removed
on the basis of the removable and irremovable foulants.

Fabris et al. (55) proposed an index to evaluate the
effectiveness of pre-treatment in fouling reduction. This
definition ignored the occurrence of the chemically irrevers-
ible fouling part in filtration.

Maartens et al. (56) introduced an index called “E4/E¢
ratio,” which is the UV absorption ratio at 465nm (E,)
and 656 nm (Eg), to quantify the efficiency for the membrane
rejection for naturally occurred brown water. This ratio,
together with the percentage decrease of the original pure
water flux (% PWF), successfully evaluated the effectiveness
for various chemical cleaning agent recipes and schemes.

Clearly from the above summary the cleaning studies
principally described the cleaning efficiencies for specific
fouling occurred in a few membrane/water systems via pre-
scribed cleaning processes. Using similar terminologies,
researchers are dealing with different parts of the same foul-
ing layer, but the lack of solid ground makes the direct com-
parison for the used cleaning agent/procedures derived
from different studies difficult. A systematical analysis for

how a cleaning agent reacts with foulants and membrane
is needed to provide a common platform for cleaning studies

CONCLUSIONS

Membrane fouling needs to be mitigated to maintain an
acceptable flux over a long-term operation. Cleaning is
classified as physical and chemical cleaning, with the
former incorporating only physical processes such as
hydraulic, pneumatic, mechanic, and applied electric fields;
and with the latter comprising use of numerous chemicals
like acids, bases, oxidants, and surfactants. This paper
reviews the up-to-date studies on physical and chemical
cleaning of membranes. The ways of evaluating cleaning
efficiencies were discussed.
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